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Abstract. Approximate solutions of some problems in high-speed hydrodynamics are given, the solutions being
based upon well-known approaches, such as the principle of independence of cavity expansion (Logvinovich), for-
mulation of the problem of the immersion of a solid contour into liquid (Wagner), various models of cavity clo-
sure in its tail, etc. Theoretical studies of the dynamic properties of slender ventilated cavities are performed.
The mathematical model of a cavity is obtained in the form of a system of nonlinear time-delay differential
equations. The linear theory of cavity stability and oscillations is developed for various cavity types. The mecha-
nism of nonlinear cavity oscillations accounting for gas-bubble detachment is considered, and the results of exten-
sive numerical experimentation are presented. A theoretical model of cavity closure is proposed that develops the
well-known Efros approach with a re-entrant jet. An approximate analysis of the model has been performed. A
planar problem of the impact and immersion of an expanding cylinder into liquid with a cylindrical free surface
of variable radius is solved in Wagner’s formulation.
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1. Introduction

Despite the tremendous progress of computational-fluid-dynamics (CFD) approaches in high-
speed hydrodynamics, the methods based upon relatively simple physical considerations and
approximate mathematical models are still of interest. These methods are widely used in such
areas of hydrodynamics as supercavitation and those close to it like planing, immersion of
bodies into liquid, and jet flows.

These methods include some prolific ideas such as the principle of independence of cav-
ity expansion by Logvinovich [1, pp. 128–130], Wagner’s formulation of the immersion of a
solid contour into liquid [2], the plane-cross-sections method used in the theory of planing
[3], various models of cavity closure in its tail including the well-known Efros approach with
a re-entrant jet [4], etc.

Within these approaches, this paper addresses the following three independent issues
related to supercavitaion:

– Research into the intrinsic properties of a ventilated cavity as a dynamic system (Section 2)
– Impact and immersion of a cylinder through a cylindrical liquid surface (Section 3)
– A theoretical model of cavity closure onto a liquid jet (Section 4).

Both scientific and applied aspects drive the interest in supercavitation. Cavitation-based
technologies are used in various areas of R&D; some of these are described, e.g., in the
Proceedings of the International Summer Scientific School on High Speed Hydrodynamics
held on June 16–23, 2002 in the city of Cheboksary, Russia. Among these areas are under-
water vehicles moving in the supercavitation mode [5–8] and appropriate propulsors [9–10],
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cavitation-free turbo-pumps for space-rocket engines [11], high-speed shipbuilding [12] and
prevention of cavitation on propeller blades and rudders of ships [13], use of cavitation in
manufacturing and operational processes in industry and transportation [14, 15].

Section 2 of this paper addresses the investigation of the intrinsic properties of a cavity
as a dynamic system. This is one of the main parts of the whole problem of supercavitation.
Many papers have focused on studies of these issues, including the known phenomenon of
cavity oscillations [16–18].

The equation of cavity expansion plays a key part in cavity dynamics. For practical
analysis, especially for unsteady cavities, the most effective are the methods based upon slender-
body hydrodynamics and integral conservation laws, including the known theory of slender cavities.
In the present paper the equation for a slender unsteady cavity as proposed by Logvinovich and
Serebryakov [19, 20] is used; this equation expresses the known principle of independence of cavity
expansion [1, pp. 128–130].

The equation makes it possible to write down a closed system of nonlinear time-delay
differential equations describing variations of cavity geometry and internal pressure [21]. Rely-
ing upon the obtained system of equations, some unsteady cavitation problems have been
solved [22–28]. The most comprehensive presentation of these results is in the author’s paper
[29].

A planar problem of impact and immersion of a cylinder through a cylindrical liquid sur-
face will be considered in Section 3. Being valuable for their own sakes, problems of that kind
are also used as constituent parts of the approximate method of planar cross-sections [3].

The problem of immersion of a cylinder in a fluid through a horizontal free surface at
small submergence was considered by Logvinovich [1, pp. 72, 79–80] in Wagner’s formulation
[2]. The solution for the problem of immersing a cylinder in a narrowing cylindrical cavity
(for small gaps between the body and the cavity), as obtained by the author, was partially pre-
sented in the papers by Logvinovich [30, 31]. In more complete form, this solution was pub-
lished in [32, 33], with an addition being made by Vasin for an arbitrary relationship between
the radius of a body and that of the cavity.

The present paper contains additional material: e.g. the planar problem of the oblique
impact of a circular arc, the problem being of interest in itself; cavity and cylinder expansion
are considered apart from cavity narrowing; the hydrodynamic force acting on the cylinder is
determined approximately within a shock-problem formulation. A more detailed consideration
of the problem is given in [34].

A model of cavity closure onto a jet is considered in Section 4. The jet may appear due
to some specific features of cavitation flow, e.g. gas injection in the case of a ventilated cavity.

There are many theoretical models describing cavity closure in its tail. The most well-
known of these are described in [35, pp. 176–200]. First of all there is Kirchhoff’s cavity at
cavitation number σ = 0, where cavity boundaries go to infinity. For σ > 0, we can mention
the model of Zhukovsky and Roshko with cavity closure onto solid plates, Ryaboushinsky’s
model with closure onto a solid body of special shape, Tulin’s models with spiral vortices,
Efros’ model with a re-entrant jet and others.

In Section 4 a model of cavity closure onto a central liquid or incompressible gas jet is
described and its approximate analysis given, the model being in some respects opposite to
that of Efros [4]. A circular re-entrant jet formed from a central jet is considered in this model
instead of the re-entrant jet formed from external flow in Efros’ model.
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2. The dynamic theory of supercavitation

2.1. THE EQUATION OF CAVITY-CROSS-SECTION EXPANSION

The process of cross-section expansion for an axisymmetric cavity is described by the differ-
ential equation [19, 20]:

∂2S(h, t)

∂t2
=− k

ρ
�p(h, t) (2.1)

in which h is a coordinate describing the cross-section on the cavitator trajectory, the coor-
dinate being associated with quiescent liquid (see Figure 1, a cavitator is a moving body that
produces an elongated cavity behind it), k = k(σ ) is a coefficient slightly affected by the cav-
itation number. (Note that the equation for the expansion of a planar cavity has a structure
similar to (2.1); hence all the results below are applicable to planar cavities within the accu-
racy of constant parameters.)

If k is constant, the integral of Equation (2.1) is

S(h, t)= S0 + S′
0V (th)(t − th)− k

ρ

∫ t

th

∫ u

th
�p(h, v)dv du. (2.2)

Here S0 =πR2
n and S′

0 = S′
0(σ ) is the initial rate of cavity expansion (a weak function of cav-

itation number), th = th(h) indicates the time instant when the cavitator passes through coor-
dinate h.

The coefficients of Equation (2.2) were calculated for various cavitators as S′
0/2πRn =

f1(σ ), k/4π = f2(σ ) (known approximations by Gouzevsky [36] for Ryaboushinsky’s cavities
have been used). For example, for σ =0·02 we have the following values for a disk: f1 =0·439,
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Figure 1. Supercavitation flow past a cavitator.
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and f2 = 0·219. Actually, the dependence of the functions f1 and f2 on σ does not greatly
affect the size of the cavity mid-section. Note that the coefficient f2(σ ), which governs the
law of cross-section narrowing, is practically the same for all types of cavitators.

2.2. CLOSED PROBLEM FORMULATION

A cavity is regarded as a variable-volume gas-filled space with gas injection and losses. Equa-
tion (2.2) must be completed with the following:

(i) Expression of the gas volume

Q(t)=
∫ h3(t)

H(t)
[S(h, t)− ST (h, t)] dh (2.3)

in which ST is the cross-sectional area of a body inside the cavity, H is the cavity inception
coordinate, h3 is the coordinate of the section in which the cavity is closed (Figure 1);

(ii) Equation for the gas mass balance inside the cavity

d
dt
(Qρk)= ṁn − ṁ y, ρk =ρk(pk) (2.4)

in whichρk is the gas density in the cavity (constant throughout the whole volume; no wave processes
in the gas are considered), ṁn, ṁ y are mass rates per second for gas injection and loss;

(iii) Equation for cavitator motion

dV
dt

=F(V, H,h3, p∞, pk, . . .). (2.5)

2.3. TIME-DELAY DIFFERENTIAL EQUATIONS

The integro-differential system (2.2–2.5), which does not have any regular methods of solu-
tion apart from numerical analysis at discrete sections, is transformed into the system (2.6) of
nonlinear time-delay differential equations, the time lag being variable. The main idea of the
transformation is to exclude integral relations by means of differentiating them with respect
to a parameter (the time in this particular case).

Q̈ =− k

ρ

∫ h3

H
p∞(h, t)dh + k

ρ
pk(t)l + ḣ3

∂S (h3, t)

∂t
+ S′

0V 2 − V̇ [ST (l)− S0]− V S′
T (l)l̇,

ḣ3 =−∂S(h3, t)/∂t − V S′
T (l)

∂S(h3, t)/∂h − S′
T (l)

, l̇ = ḣ3 + V, l =h3 − H, Ḣ =−V τ̇ =1+ ḣ3

V (t − τ) ,

d
dt

∂S(h3, t)

∂t
=−

{
S′

0V̇ (t − τ)
V (t − τ) + k

ρ

[
�p(h3, t − τ)

V (t − τ) +
∫ t

t−τ
∂p∞(h3, v)

∂h
dv

]}
ḣ3 − k

ρ
�p(h3, t),

∂S(h3, t)

∂t
= S′

0V (t − τ)− k

ρ

∫ t

t−τ
�p(h3, v)dv, (2.6)

∂S(h3, t)

∂h
= S′

0

[
1− V̇ (t − τ)τ

V (t − τ)
]

− k

ρ


�p(h3, t − τ)τ

V (t − τ) +
t∫

t−τ

u∫

t−τ

∂p∞(h3, v)

∂h
dv du


 ,

�p(h, t)= p∞(h, t)− pk(t), ST = ST (x).

Here l is the cavity length, x = h − H is the distance between the cavitator and the given
cross-section, t − τ is the moment at which the cavitator passes through coordinate h3, τ is a
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time lag. The assumption is made that the gas pressure inside the cavity is almost constant
lengthwise and depends only upon time [16].

Equations (2.6) are completed with the differential equation for the gas pressure

ṗk = ṁn − ṁ y −C Q̇ pn
k

nC Qpn−1
k

. (2.7)

This is derived from (2.4) assuming that gas density and pressure conform to the polytropic
equation ρk = Cpn

k , in which 1/n is a polytropic factor. Here we use known data on gas
withdrawal along trailing vortices [37, 38], and under conditions close to vapour cavitation
[1, p. 146], as well as a model of withdrawal due to gas-jet ejection. The gas withdrawal in
the form of periodical detachment of bubbles, which was observed in experiments conducted
by Michel [16] and others, is realized during numerical modeling of cavity pulsations [26] due
to periodical pinching and detachment of the cavity tail part (see Figure 10).

2.4. LINEAR THEORY OF CAVITY STABILITY AND OSCILLATIONS (BASIC PROBLEM)

2.4.1. Problem formulation
The simplest cavitation flow under steady input conditions, namely an axisymmetric cavity in
a weightless liquid (p∞ =const) at constant cavitator velocity V and constant gas mass in the
cavity (Qpn

k =const) is considered. The equations of cavity dynamics (2.6) and (2.7), after lin-
earization, produce an equation for small pressure oscillations:

p′′′
k (t̄)+ p′

k(t̄)+ p′
k(t̄ − τ̄0)− 2

τ̄0
pk(t̄)+ 2

τ̄0
pk(t̄ − τ̄0)=0. (2.8)

Here T =√
nρQ0/(kl0 pk0) is a time scale, t̄ = t/T is a dimensionless time, pk0,Q0, l0, τ0 = l0/V

are steady parameter values. The sign ′ denotes derivatives with respect to t̄ . Equation (2.8)
and the total problem have only one governing parameter, i.e., the dimensionless time lag
τ̄0 = τ0/T . Approximating the cavity shape by an ellipsoid of evolution will produce:

τ̄0 =
√

12
n

· pk0

p∞ − pk0
=

√
12
n

(
Eu
σ

−1
)
. (2.9)

2.4.2. Characteristic equation and eigenvalues
The time-delay Equation (2.8) belongs to the class of differential equations with a divergent
argument, which are associated with great mathematical difficulties regarding their analysis.
Equation (2.8) leads to the following transcendental characteristic equation

λ̄3 + λ̄+ λ̄e−λ̄τ̄0 − 2
τ̄0

+ 2
τ̄0

e−λ̄τ̄0 =0 (2.10)

with an infinite set of eigenvalues (roots). A method for solving such equations has been
developed based on the numerical analysis of complex eigenvalues trajectories depending on
one or several parameters; this method makes it possible to determine a root of any given
number [22].

The essence of the method is as follows. When τ̄0 =π j
√

2 ( j =1,2, . . .), Equation (2.10)
has purely imaginary eigenvalues λ̄ j = iω̄ j , ω̄ j = √

2. By differentiating (2.10) with respect to
τ̄0, we find

dλ̄
dτ̄0

=− 1

τ̄ 2
0

2− exp(−λ̄τ̄0) (λ̄
2τ̄ 2

0 +2λ̄τ̄0 +2)

3λ̄2 +1− exp(−λ̄τ̄0) (λ̄τ̄0 +1)
,
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Figure 3. The dimensionless frequency of cavity oscillation as a function of the dimensionless time lag ω̄ j (τ̄0).

which is equivalent to two equations in terms of real variables:

dµ̄
dτ̄0

=− 1

τ̄ 2
0

AC + B D

C2 + D2
,

dω̄
dτ̄0

=− 1

τ̄ 2
0

BC − AD

C2 + D2
,

where A, B,C and D are appropriate functions of τ̄0, µ̄I ω̄. These equations are integrated
numerically with initial conditions

τ̄0 j =π j
√

2, µ̄(τ̄0 j )=0, ω̄(τ̄0 j )=
√

2.

Thus, the total system of eigenvalues of Equation (2.10) is determined, which includes a
zero root of the third order and an infinite set of complex eigenvalues

λ̄ j (τ̄0)= µ̄ j (τ̄0)± iω̄ j (τ̄0), j =1,2, . . . , 0≤ τ̄0<∞.

Note that the third-order zero root may cause extraneous solutions like c1 + c2t + c3t2 if the
accuracy of the numerical integration of (2.8) is not sufficient.

2.4.3. Examination of the system of eigenvalues
The obtained system of eigenvalues has a very well-defined structure, which makes it possi-
ble to find out the main cavity-dynamics properties. The trajectories of the first three roots of
Equation (2.10) are illustrated in Figure 2. The dimensionless circular frequency ω̄ j (τ̄0) forms
a family of monotonically decreasing functions. The real parts of the eigenvalues µ̄ j (τ̄0) are
mutually intersecting functions of similar type that intersect the horizontal axis at the points
τ̄0 =π j

√
2. To the left of such a point, µ̄ j <0, i.e., the jth eigenvalue is stable. To the right

of this point µ̄ j >0, i.e., the eigenvalue is oscillatory unstable. The situation is the same for
any j .

The curves µ̄ j (τ̄0) show that a cavity is asymptotically stable for τ̄0<π
√

2, and oscillatory
unstable for all τ̄0>π

√
2, the value τ̄0 =π√

2 (Eu/σ = 2·64) being a stability boundary. The
instability of a linear system transforms in real nonlinear systems (to which a cavity may be
referred) into self-excited oscillations (cavity pulsations) with finite amplitude and with a fre-
quency equal or close to that of the linear system. The main nonlinear factor in the case of
a cavity is the detachment of gas bubbles caused by the pinching of the cavity tail part by
traveling waves.

The cavity oscillation frequency is determined by the physically meaningful root which has
the greatest real part among all the other unstable roots for given τ̄0. Thus, the dimensionless
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frequency of asymptotic oscillations (actually the frequency of self-oscillations) is a saw-tooth
function of τ̄0 (Figure 3) consisting of portions of the consequent curves ω̄ j (τ̄0). The greater
the value of τ̄0, the smaller the tooth height; also ω̄≈1 for increasing values of τ̄0. The “tooth
spacing” appears to be 2π .

The dimensional circular frequency of oscillations is given by

ω= ω̄/T = ω̄√
kpk0l0/(nQ0ρ). (2.11)

If τ̄0 is large enough, then ω̄≈1 and ω is proportional to
√

pk0.
Pressure oscillations inside a cavity are accompanied by waves on the cavity surface with

wavelength lb = 2πV/ω. The number of waves along the length of the cavity is N = l0
/

lb =
ω̄τ̄0

/
(2π). The function N (τ̄0) calculated with the use of the “saw” in Figure 3 is shown

in Figure 4. This is also a discontinuous function. The number of waves along the cavity
is close to an integer value equal to the number j of the dominating root. In the points of

discontinuity, N increases step-wise by ∼1. There is a simple estimate for ω̄≈ 1:N ≈ τ̄0

2π
=

1
π

√
3
n

(
Eu
σ

−1
)

.

2.4.4. The major physical conclusions

• The similarity parameter for unsteady ventilated cavities is τ̄0 =
√

12
n

(
Eu
σ

−1
)

.

• The generic property of ventilated cavities under various conditions is their oscillatory
instability, which causes the phenomenon of pulsation (self-oscillations) of cavities.

• The number of waves along an oscillating cavity changes stepwise by 1 (change of oscilla-
tion mode) under continuous variation of flow parameters (continuous variation of τ̄0).

2.5. COMPARISON WITH EXPERIMENTS

The present theory clearly explains the most typical features of cavity oscillations, both
in axisymmetric and planar cases. The results of numerous experiments and their detailed
examination for oscillations of planar cavities past a wedge are presented in [16]. A detailed
comparison [22] shows that, generally, the features described in that paper are quite close to
those given by the present theory.
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Theory and experiment for axisymmetric cavities past disks have been compared on the
basis of multiple experimental data by different authors, the data varying greatly in terms of
test conditions (10≤Fr≤120,0·02≤σ,0·04≤Eu≤10). Some experimental data reduced to the
form ω̄ (τ̄0) are plotted as point marks over the theoretical graph in Figure 3. The experiments
for Eu=0·05 and Eu=0·5(τ̄0 ≈20) were conducted in an open natural reservoir and were not
intended specifically for investigation of oscillations, which is why some points exhibit scatter-
ing. Experiments for Eu = 2–6 were done in a water tank specially made for the purpose of
pulsation studies. The positions of point marks on the theoretical plot depend on the value
of 1/n. Solid points are related to 1/n = 1 (isothermal process in gas), open points are for
1/n = 1·4 (adiabatic process). Comparing positions of solid and light markers of the same
shape, one can see that a better match between test and theory is obtained for 1/n = 1. The
most typical from this point of view is one of the experimental cavities involving 12 waves.
The appropriate point in Figure 3 lies within a 12-wave zone at 1/n =1 and within a 15-wave
zone for 1/n =1·4.

Stepwise pulsation-mode change is a subject of comparison between the theory and the
experiments of Epshteyn on oscillations of horizontal disk-induced cavities (see Figure 4). The
number of waves along the cavity are plotted by point marks as a function of τ̄0 together with
a theoretical step-like dependence N (τ̄0). Using different polytropic factors 1/n shows that the
best agreement between theory and experiment is for 1/n =1·1, i.e., the process is close to iso-
thermal.

2.6. DEVELOPMENT OF THE LINEAR THEORY

The method developed made it possible to solve some other problems of unsteady cavitation
in a linear formulation.

2.6.1. Vertical cavities in a gravity field
Dynamic properties of vertical cavities in a liquid have been investigated for the case where
gravity cannot be neglected. The peculiarity of such cavities is the vertical gradient of the
external pressure. Vertical cavities have the same dynamic properties as those in a weightless
liquid. The parameter τ̄0 for vertical cavities is determined on the basis of the external pres-
sure p∞(h) being taken halfway the cavity length.

2.6.2. Cavities with loss of gas
Another issue of great interest is gas loss from a cavity and its effect on the cavity itself. The
cavity model with constant gas mass inside (Section 2.4) leads to the conclusion that a cav-
ity is always unstable if τ̄0 ≥π√

2. Meanwhile experiments in a test tank (τ̄0 ≈ 20–60) show
that horizontal cavities may be both stable and oscillating, and usually it is an increase of
gas injection that stops the oscillations.

Let us consider a cavity model with gas loss taken into account, the loss amount being a
monotonically increasing function of gas pressure (that is, a monotonically decreasing func-
tion of the cavitation number σ): ṁ y = ṁ y(pk), ∂ṁ y/∂pk > 0. In this case, the equation of
small cavity oscillations is:

p′′′
k (t̄)+α p′′

k (t̄)+ p′
k(t̄)+ p′

k(t̄ − τ̄0)− 2
τ̄0

pk(t̄)+ 2
τ̄0

pk(t̄ − τ̄0)=0. (2.12)

The equation features an additional damping term αp′′
k , with

α= dṁ y
/

dpk

Cpn
k0

√
ρ pk0

nkl0 Q0
. (2.13)
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Considering the eigenvalues of the characteristic equation, one finds the general sta-
bility boundary ακp(τ̄0) for the cavity (solid curve in Figure 5). The stability bound-
aries for separate eigenvalues α j (τ̄0) are shown as dashed lines in Figure 5. The cavity
is stable for α > ακp. The appearance of α p′′

k does not significantly affect the frequency
values.

In the case of gas withdrawal from horizontal cavities along trailing vortices, let us use
Epshteyn’s formula [38]

Q̄y = Qy

V d2
= 0·42c2

x0

σ(σ 3Fr4 −2·5cx0)
,

where Qy is volume per second rate of gas withdrawal from the cavity. The rate of gas loss
is ṁ y =Cpn

k V d2 Q̄y . By differentiating this expression with respect to pk and substituting the
derivative in (2.13), we obtain the coefficient α as

α= 6
π(1+σ)τ̄0

Q̄yσ

cx0

(
1+ τ̄ 2

0

3
+1·5τ̄ 2

0
Q̄yσ

cx0

)
. (2.14)

There is a complicated expression for Q̄yσ
/

cx0 considered as a stability criterion for
weight-affected cavities. The damping coefficient α grows as Q̄yσ

/
cx0 increases. Substituting

α=ακp(τ̄0) in the equivalence (2.14), we find the value of Q̄yσ
/

cx0 corresponding to the sta-
bility boundary:

(
Q̄yσ

cx0

)

κp

=−3+ τ̄ 2
0

9τ̄ 2
0

+
√√√√

(
3+ τ̄ 2

0

9τ̄ 2
0

)2

+ π(1+σ)ακp(τ̄0)

9τ̄0
.

A part of the theoretical stability boundary in the coordinates τ̄0, Q̄yσ/cx0 is plotted in
Figure 6 as a solid line. Experimental results by Epshteyn and Lapin are shown by point
marks. Experimental and analytical results are in close agreement.

Figure 6. The cavity stability boundary in terms of
dimensionless gas-injection rate.

Q

q

Figure 7. Excitation of the cavity oscillation.
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2.6.3. Jet-induced ejection of gas from a cavity
The problem of a jet acting in the mode of gas ejection from a cavity has been considered.
According to well-known ejection properties of turbulent jets, it is assumed that the ejection
rate is proportional to the length of the part of the jet located inside the cavity. A survey
of this model shows that the jet produces a small effect on cavity stability. The trail jet may
dampen cavity oscillations within a limited parameter envelope, which corresponds approx-

imately to the relationship 0·8–0·9 < κ R0V0

cx0 Rn V

√
ρ0

ρk
< 1·1–1·2. Here κ = 0·155 is jet ejection

coefficient; R0,V0, ρ0 are radius, velocity and density of the jet; cx0, Rn,V are cavitator drag
coefficient, radius and velocity of the cavitator; ρk is gas density inside the cavity.

2.6.4. Cavity forced oscillations
It is interesting to study the reaction of a cavity as a dynamic system to an external disturbance.
We will consider a method to excite cavity oscillations by means of a periodic variation of the
volume q connected with the internal cavity volume Q (Figure 7). Wave processes in the gas are
neglected; it is assumed that the total mass in the volume Q +q is constant. After linearization,
Equations (2.6) and (2.7) produce the equation for forced cavity oscillations

p̄′′′
k (t̄)+ p̄′

k(t̄)+ p̄′
k(t̄ − τ̄0)− 2

τ̄0
p̄k(t̄)+ 2

τ̄0
p̄k(t̄ − τ̄0)=−q̄ ′′′. (2.15)

We denote a disturbance as q̄ = Āeiω̄t̄ and pressure oscillations as p̄k = B̄eiω̄t̄ . Equation
(2.15) gives the amplitude and phase-frequency response functions b = ∣∣B̄/ Ā

∣∣, arg B̄ =π +ϕ,
χ = ω̄τ̄0/2. The frequency-response functions of a stable cavity are shown in Figure 8 for
τ̄0 = 3. There is a resonance (b> 1) for χ ≈π . As χ → ∞ ϕ→ 0, b → 1, the cavity volume
does not keep pace with the pressure disturbance at high frequencies, i.e., the cavity becomes
“rigid”.

For unstable cavities, theoretically, there may be a method of external influence which
would dampen cavity self-oscillations. Given the volume control law as q̄ = α

∫
p̄kdt̄ , from

(2.15) we will obtain Equation (2.12) considered above. A cavity is stable if α>αkp (Figure 5).
For an unstable cavity with τ̄0 = 5, we have the value αkp = 0·282. Frequency-response func-
tions in terms of amplitude for different values α>αkp are shown in Figure 9. The amplitude
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Figure 8. Frequency-response functions of a stable
cavity.
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Figure 9. Frequency-response functions of an intrin-
sically unstable cavity with added artificial damping.
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at resonance decreases if α increases. As can be seen from Figure 5, there is an estimate,
namely αkp max ≈1·2.

2.7. NONLINEAR CAVITY OSCILLATIONS WITH PERIODIC DETACHMENT OF GAS BUBBLES

Along with a linear analysis, numerical integration of the full nonlinear system of the
time-delay Equations (2.6, 2.7) has been performed with account taken for periodic detach-
ment of gas bubbles. Let us use the following conditions: V = const, p∞ = const, with gas
injection rate ṁn(t) and periodic bubbles detachment (other components of gas loss are
neglected). Theoretically, waves on a cavity surface lead to instant cavity profile pinching and
detachment of part of the volume (Figure 10); the said detached parts do exist in reality,
though not so explicitly (e.g. [16]).

Note the qualitative peculiarities of nonlinear oscillations: not only do the cavity volume
and length change stepwise at the moment of detachment, but the derivatives Q̇ and ṗk do so
as well. Thus, this moment requires redefining the initial conditions. At the moment of bubble
detachment, the cavity length features an infinite (though integrable) variation rate l̇ →−∞.

By selecting specific scale values (e.g. different in lengthwise and radial directions) the non-
linear system of Equations (2.6)–(2.7) transforms into a nondimensional form in which all the
coefficients are equal to 1, and the only governing parameter, i.e., nondimensional injection

rate, is ¯̇qn = 2Eu
π cx0

Qn

V d2
, where d is the cavitator diameter.

A comprehensive numerical analysis has been performed, covering a cavity pulsation range
from a single- to a ten-wave mode under different types of injection. The results of the analy-
sis are in good qualitative agreement with known experimental data and the above linear the-
ory.

An example of results of a multi-wave (N ≈ 6) analysis is presented in Figure 11, ¯̇qn =
10. The oscillations are not strictly regular and feature variations in the pressure pulse and
the number of waves, (also observed in experiments) due to the excitation of unstable lower
eigenvalues. A phase trajectory (� p̄′,� p̄) is of the converging (stable) spiral type, with
instant energy supply at the moment of bubble detachment as in a pendulum clock.

Note that the most important result is that the accepted theoretical model reflects deep
inherent properties of real cavities. Thus, the analysis shows that under growth of the injec-
tion rate, there exist switches between pulsation modes towards a greater number of waves
along the cavity; this is also observed in experiments. This is especially pronounced for the
following analysis conditions: under a continuous, or very slow change in the injection rate
and in the absence of external disturbances, there is a critical injection rate value ¯̇qn =3·26 at
which single-wave oscillations R 1 spontaneously turn into two-wave ones R 2 (see Figure 12).
Hereafter N is the number of waves along the cavity, and RN denotes the corresponding
mode.

Multi-wave transitions under change of injection rate are not that explicit. The multi-wave
modes themselves are unstable. Both their parameters (cavity length, pulsation frequency,

lmin

lmax

Figure 10. Gas-bubble detachment in the process of cavity pulsation.
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Figure 11. Multi-wave cavity-pulsation mode.
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Figure 12. Change of cavity-pulsation modes with variation of the dimensionless gas-injection rate.

bubble volume), and number of waves N are unstable. Along with the main mode, there are
cavities with a lower or higher number of waves.

Figure 12 shows the distribution of various pulsation modes RN as a function of the
nondimensional injection rate ¯̇qn ≤13·75. Cavities with different numbers of waves may occur
at the same injection rate being kept for rather a long time (∼ 20–30 periods of pulsation).
The rate of occurrence of a given cavity mode as a percentage is displayed by the lengths
of horizontal lines (100% relates to � ¯̇qn = 0·5). One can see that generally the mode num-
ber N increases for increasing of injection rates. Approximate boundaries between modes can
be indicated: transition from R2 to R3 occurs at ¯̇qn ≈5·5; from R3 to R4 at ¯̇qn ≈8·5; from R4
to R5 at ¯̇qn ≈13·3.
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3. Impact and immersion of a cylinder through a cylindrical liquid surface

3.1. PROBLEM FORMULATION

In an unbounded, incompressible, weightless, ideal liquid there exists a circular cavity of
radius R, narrowing or expanding with a velocity VR(t) (the positive direction is towards the
centre). A circular expanding body with radius r < R (Figure 13), with a gap ε= R − r is
immersed symmetrically in the fluid with a variable velocity Vy(t). The velocity of expansion
of the cylinder is Vr (t), the positive direction being out from the centre. Generally, relative
radial motion is governed by the sum of the velocities ṼR = VR + Vr . It is shown in [34] that
taking additional account for cavity and cylinder expanding results in the same formulas as
those in [32, 33], with substitution of VR by ṼR .

To solve the problem, we shall use the well-known approach developed by Wagner for the
immersion of an obtuse wedge [2]. Due to a small deadrise angle, the boundary conditions
on the wedge and the free surface may be transferred to the undisturbed liquid surface. As a
result, the immersion of an obtuse angle can be treated as an impact of a flat expanding plate
on the surface of the fluid. At each instant of time the plate has a wetted width identical to
that of the wedge. The velocity potential induced by the plate impact is used to determine the
wedge wetted width by writing down an integral equation for the “meeting” of a liquid par-
ticle on the water surface with the wedge facet. The method is less reliable at higher deadrise
angles, hence a nonlinear approach is needed.

Similarly, it is assumed in this case that the flow developing in the process of immersion
of an expanding circle in a circular cavity is equivalent to the flow initiated by the impact
of a circular arc of radius r = R. The difference from the plate impact is that the arc has two
impact velocities: translational Vy and radial ṼR . At each instant of time the width of the arc
is assumed to be equal to the wetted width of the submerged circle (Figure 13, where 2B is
the angle of the wetted surface). Then the velocity potential induced after combined impact
of the arc is determined, and the integral equation of “meeting” is written down and solved.

Basically, Wagner’s approach is valid for any ratio between cylinder and cavity radii; how-
ever, the cylinder immersion should be small, when the shapes of the submerged part and the
free surface slightly deviate from the undisturbed circular liquid surface (when they produce
a small angle with respect to this boundary). The solution becomes less accurate at greater
immersion as well as at greater deadrise angle.

The accuracy of the solution depends on the gap ε, or radii ratio R
/

r . The smaller the
gap, the closer is the circle to the cavity boundary, and the greater is the wetted width 2B
within which the boundary conditions can be transferred onto an undisturbed cavity bound-
ary. Thus, if ε→ 0, this is valid for the entire cylinder surface: B →π (see (3.7) below, η is
the cylinder submersion). For a flat water surface (ε→∞, R/r →∞), the circular arc deviates
greatly from the plane, even at small 2B angle, and the solution becomes inaccurate. More-
over, unlike for the infinite wedge, the above method based on a “meeting” integral equation
is not meaningful for B =π/2 (η/r =0·36338) when the water surface rises to the horizontal
diameter of the cylinder.

3.2. OBLIQUE IMPACT OF AN ARC

Compared with [32, 33], the present paper concerns the impact problem in a more general
formulation as a problem of an oblique impact (Figure 14). Consider an arc of radius R with
central angle 2B striking the cylindrical fluid surface. The impact velocity 	V makes an angle
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Figure 13. Immersion of a cylinder through a cavity
boundary.

y

C

z

O

E
-B B

D

A

V

V

n VR

~

VR

~ Vn

R

y

C

z

O

E
-B B

D

A

V

V

n VR

~

VR

~ Vn

R

β

γ

Figure 14. An oblique impact of a circular arc
against a cavity surface.

γ with the arc symmetry axis, and the expansion velocity ṼR is directed along the radius at
each point. On the free surface the potential is Φ=0.

Thus, we get an external boundary-value problem of mixed type, which is solved by use of
Keldysh-Sedov’s theorem [39, pp. 284–289]. The problem solution gives the velocity potential
on the arc (|β|≤ B):

Φ=−2R

(
Vz sin

β

2

√
a + Vy

√
a cos

β

2
− ṼR

2
ln

cosβ/2−√
a

cosβ/2+√
a

)
, (3.1)

and the normal velocity on the free surface (|β|> B):

Vn = Vz

(
− sinβ± cos

β

2

sin2 β
/

2−a√−a

)
+ Vy

(
− cosβ± sin

β

2
cos2 β/2+a√−a

)

+ṼR

(
−1± sinβ/2√−a

)
. (3.2)

Here Vz = V sin γ, Vy = V cosγ , a = cos2 β
/

2 − cos2 B
/

2. The plus and minus signs must be
chosen on the intervals B<β<π and −π <β<−B, respectively.

For vertical impact and expansion, the impulsive force Py acting on the arc is directed
along the Y-axis and can be determined from the expression

Py =−2ρR
∫ B

0
Φ (β) cosβ dβ=ρπR2 sin2 B

/
2
[(

1+ cos2 B
/

2
)

Vy +2ṼR

]
. (3.3)

Similarly, the impulsive force acting on the arc at oblique impact is

Pz =−2ρ R
∫ B

0
Φ (β) sinβ dβ=ρ π R2Vz sin4 B

/
2. (3.4)
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Notice an interesting feature of an oblique impact. Let ṼR = 0. We can find an angle γ1

between the vertical axis and the impulsive force vector 	P . From (3.3) and (3.4) we obtain

tan γ1 = Pz

Py
= tan γ

sin2 B
/

2

1+ cos2 B
/

2
,

i.e., the directions of the impulsive force and the impact velocity do not coincide (vector
“refraction”).

From (3.3) and (3.4) we can determine the apparent masses of the fluid for side impact,
vertical impact and expansion of the arc:

m∗
z =ρπR2 sin4 B/2, m∗

y =ρπR2
(

1− cos4 B
/

2
)
, m∗

R =ρπR2 ·2 sin2 B
/

2. (3.5)

Applying the obtained results, we can determine approximately the hydrodynamic coeffi-
cients of the transversal forces:

C
αy
y =2 sin2 B

/
2(1+ cos2 B

/
2), αy = Vy

/
W, CαR

y =4 sin2 B
/

2, αR = ṼR

/
W,

Cψ
z =2 sin4 B

/
2, ψ= Vz

/
W.

Here W is the planing speed.

3.3. SYMMETRICAL IMMERSION OF AN EXPANDING CYLINDER

The problem of symmetric immersion of a cylinder through a narrowing cavity boundary is
solved in [32, 33]. Additional cylinder and cavity expansion are taken into account in [34].
The formulas that were derived coincide if the narrowing velocity VR is substituted by the
generalized velocity ṼR .

We shall not repeat here the derivation of the integral equation for the liquid particle/
cylinder contour “meeting” [32, 33]; written below is just the final formula for the equation:

2η−u (ε+η)= 2
π

∫ u

0

r −
√

r2 − (ε+η)2 f (2− f )√
f (u − f )

d f , (3.6)

where u =1− cos B.
Equation (3.6) defines the relationship between the submergence η, the gap ε and the wetted

width 2B. This equation was obtained under the assumption of arbitrary variable velocities
Vy,VR and Vr , and from the point of view of Wagner’s formulation it is valid for arbitrary gap
and rather small submergence. In [32, 33], calculation of the wetted width for arbitrary gap is
reduced to solving a transcendental equation.

Here the case for a small gap (ε�r ) and a small submergence (η� r) is considered, when
the right-hand side of (3.6) is zero to lowest order compared to the left-hand side. As a result,
Equation (3.6) goes over into an equality

cos B = ε−η
ε+η or tan2 B

2
= η

ε
. (3.7)

Substituting B from (3.7) in (3.5), we obtain the apparent masses

m∗
y =ρπr2 2ε+η

(ε+η)2 η, m∗
R =ρπr2 2η

ε+η . (3.8)

The vertical momentum of the liquid layer of unit thickness is

Py =m∗
y Vy +m∗

R ṼR .
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The time derivative of the momentum is the force acting on the cylinder

f = d
dt

(
m∗

y Vy +m∗
R ṼR

)
= ρπr2

ε+η

[
2

(
ε

ε+ηVy + ṼR

)2

+η
(

2ε+η
ε+η

dVy

dt
+2

dṼR

dt

)]
. (3.9)

There are two limitations related to the use of Equation (3.9). The first is for the case of
the cylinder leaving the liquid (negative velocities Vy or ṼR). The second concerns the case of
decelerated submergence (negative acceleration V̇y,

˙̃VR). Closer consideration shows [34] that
the necessary conditions for the existence of the force f are

ε

ε+ηVy + ṼR >0, f >0. (3.10)

4. Model of cavity closure onto a jet

The Efros model with a re-entrant jet is shown in Figure 15. According to the classical Efros
method, a cavity may be closed onto a solid body, or a central liquid jet of high intensity
with the formation of circular re-entrant jet (e.g. Figure 16). The flow pattern here is similar
to that of Efros’ model.

Below a model of cavity closure onto a central liquid or incompressible gas jet is described
and its approximate analysis given, the model being in some respects opposite to that of Ef-
ros. A circular re-entrant jet formed from a central jet is considered in this model instead of
a re-entrant jet formed from an external flow as in Efros’ model.

4.1. PHYSICAL MODEL

Gravity is neglected; the flow is axisymmetric; all liquids are ideal and incompressible. Consider
a cavity which closes onto a central jet of incompressible gas or liquid, with no total pressure
loss in the jet and its branches. Like in the Efros model, the flow is potential, although there
exist surfaces between external flow and gas (vapour) in the cavity with tangential velocity dis-
continuity. The flow pattern at the cavity tail may be described on the basis of the following
considerations.

Just after the cavitator, the cavity is getting wider, then reaches a maximum diameter, upon
which it is getting narrower, down to zero diameter at the closure. This narrowing in the
tail affects the jet, making it slower and causing a pressure increase at the cavity boundary.
By regarding the velocity field in the system of coordinates as linked with the undisturbed
outer fluid, we can consider a velocity (energy) for the narrowing process. Depending on the
relation between the energy of the jet and that of the narrowing, two possible cases can be
realized: (1) The inward radial velocity on the cavity boundary is not totally eliminated; thus

p pk < V

p

Figure 15. Classical Efros model of cavity closure
with a re-entrant jet.

Figure 16. The Efros model with closure onto a cen-
tral jet (a cavity produced by flow separation from a
blunt afterbody is shown).
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the cavity boundaries close onto each other with some finite speed. This case is closely related
to the classical Efros model; (2) The radial cavity velocity is totally eliminated on the central
jet; the cavity boundaries are not closed; a central jet exits the cavity.

Details of the latter flow pattern depend on the relationship between the jet stagnation
pressure, p0, and that of the surrounding flow, p0 f .

If p0> p0 f , Efros’ closure onto a liquid jet is realized, as in Figure 17 or Figure 16 (p0 �
p0 f ).

If p0< p0 f (Figure 18), then in the region of jet-cavity interaction, critical points occur in
the jet with pressure p0. The points form a circle on the cavity boundary. The circle separates
two branches of the initial central jet, i.e., the part going out from the cavity, and the annu-
lar re-entrant jet. The latter is an important feature of this flow type, since if the central jet
contains gas, it partially contributes to cavity ventilation.

4.2. FLOW WITH CENTRAL JET FOR p0< p0 f

A qualitative picture of the pressure distribution along the cavity-liquid boundary is shown in
Figure 19. In the front part, the pressure is almost constant, and equals pk . Then it increases
and reaches its maximum value, the jet stagnation pressure p0, at the line of critical points
O. Then it decreases to the free-stream pressure at infinity, p∞.

For further consideration, we shall replace this pressure curve with a step-function (dashed
line in Figure 19). The central step height is p0; initially, the coordinates of the front and
rear edges of the step-function x1, x2 are unknown. They are associated with the times t1, t2
and the areas S1, S2, which are also unknown. Here also: Sc is the cross-sectional area of the
undisturbed central jet, S2 is the cross-sectional area of the jet downstream of the cavity, and
S3 is the cross-sectional area of the annular re-entrant jet.

Consider the cavity closure area more in details. The central jet is assumed to be slender
enough, so that the jet-cavity interaction region, i.e., the x2 − x1 interval is at the cavity tail.
It allows for an assumption that the cavity-collapse velocity at x1 is approximately equal, but
opposite in sign, to the cavity-expansion velocity at the cavitator trailing edge: Ṡ(x1)≈−S′

0V ,
where V = const is the external-flow velocity. Starting from x1, the cavity acquires a curva-
ture of opposite sign under a positive pressure difference p0 − p∞>0 (local cavitation number
σ <0) and has approximately zero velocity Ṡ(x2)≈0 at x2.

Let us apply the equation for the cavity cross-section expansion (2.1) to the x2 − x1 inter-
val. Then two equations can be given: for the cavity-collapse velocity and for the cross-section
areas, respectively (ρ is water density):

−S′
0V − k

ρ

∫ t2

t1
(p∞ − p0)dv= Ṡ(x2)=0, S1 − S′

0V (t2 − t1)− k

ρ

t2∫

t1

u∫

t1

(p∞ − p0)dvdu = S2.

Figure 17. Efros’ cavity closure onto a central jet;
p0> p0 f .

O

O

Figure 18. A proposed model of the closure onto a
central jet; p0< p0 f .
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Figure 19. Pressure distribution at the cavity bound-
ary.
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Figure 20. Experimental data on variation of cavity
number σ with variation of the dimensionless jet
momentum J̄ .

After calculating the integrals, we find S1 − S2 = ρV 2S′2
0

2k(p0 − p∞)
. Using certain expressions

from [40], namely S′
0 = 2π Rncx0

a
, k = 4π cx0

a2
, where a(σ )≈ const, we have

S1 − S2 = ρV 2π R2
ncx0

2(p0 − p∞)
= Wc

p0 − p∞
, (4.1)

where Wc is the cavitator drag.
Now Equation (4.1), together with the equations for momentum,

ρ0(S2V 2
2 − Sc V 2

0 − S3V 2
3 )= pk S1 − p0(S1 − S2)− p∞S2, (4.2)

continuity

ScV0 = S2V2 + S3V0, (4.3)

and Bernoulli’s equation

p0 = pk + 1
2
ρ0V 2

0 = p∞ + 1
2
ρ0V 2

2 (4.4)

can be applied to the total configuration shown in Figure 19. In these equations: ρ0 =const is
the gas (liquid) density in the jet, V0 is the velocity of the undisturbed jet, V2 is the velocity
of the jet downstream of the cavity, V3 = V0 is the re-entrant jet velocity. The total dynamic
pressure of the external flow is p0 f = p∞ + 1

2ρ V 2.

Denoting
p0 f

p0
≈ ρ V 2

ρ0V 2
0

= M>1, and assuming small cavitation number: σ = 2(p∞ − pk)

ρ V 2
�1,

we can take σ M =o (1). Then from (4.4) we get:

V 2
2 = V 2

0 (1−σ M), V2 ≈ V0

(
1− σ M

2

)
.

Volume-per-second rates through the S2 and S3 sections are derived from (4.1) to (4.3):

q2 = S2V2 = ScV0 − Wc

2ρ0V0
(1+σ M), q3 = S3V0 = Wc

2ρ0V0
(1+σ M), (4.5)

and q0 = ScV0 is total jet volume rate.
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Let us denote J = ρ0V 2
0 Sc as the momentum of the part of the jet passing through a

cross-section per second. Let J̄ = J/Wc be the dimensionless momentum. The small value σ M
may be neglected as compared to 1, whence the dimensionless form of (4.5) gives:

q̄2 = q2

q0
=1− 1

2 J̄
, q̄3 = 1

2 J̄
. (4.6)

We see at once from (4.6) that the jet past the cavity (q2>0) exists only if J̄ >1
/

2. Thus,
flow patterns are very different for J̄ < 1

/
2 and J̄ > 1

/
2. In the first case, there is no jet

beyond the cavity, so the jet totally returns into it.
If J̄ > 1

/
2, the jet is divided into two parts: the re-entrant jet returns a mass-flow-rate

portion q̄3; the mass portion to leave the cavity is q̄2. The greater the momentum, J̄ , the less
is the returning part, and the greater is that which leaves.

These processes affect the cavitation number. When J̄ = 0, there is a free cavity with cav-
itation number σ . An increase of momentum in the range 0< J̄ ≤ 1

/
2 leads to a greater

re-entrant jet and a lower cavitation number as the re-entrant jet contributes to cavity
ventilation.

If J̄ > 1
/

2, there is gas withdrawal from the cavity that increases with increasing J̄ ,
together with a growth of the cavitation number (compare the above peculiarities of the
cavitation-number variation with the test results (Figure 20); the cavitation number reaches
a minimum at J̄ ≈0·5 in experiment).

Table 1. Nomenclature

a(σ )≈ const S cavity cross-sectional area
Ā complex amplitude of cavity disturbance S0 cavitator cross-sectional area S0 =πR2

n
b amplitude-frequency response function S1 cavity cross-sectional area at x1
B̄ complex amplitude of forced pressure S2 the cross-sectional area of the jet downstream

oscillations in a cavity of the cavity
2B central angle of the wetted surface S3 the cross-sectional area of the annular re-entrant jet
cx0 cavitator drag coefficient Sc the cross-sectional area of the central jet
C the constant of the gas state equation S′

0 initial rate of cavity expansion

C
αy
y ,CαR

y ,Cψz hydrodynamic coefficients of ST the cross-sectional area of a body inside the
transversal forces cavity

d diameter of cavitator t time

Eu Euler number Eu=2p∞
/
ρV 2 th the time moment when cavitator passes through

f force acting per unit length of the cylinder coordinate h
f1, f2 cavity expansion equation coefficients t1 = x1/V, t2 = x2/V
Fr Froude number Fr= V

/√
gd T time scale

h coordinate of a cavity cross-section V external flow velocity
h3 the coordinate of the section in which V0 jet velocity

the cavity is closed V2 the velocity of the jet downstream
H the cavity inception coordinate of the cavity
i imaginary unit i=√−1 V3 the re-entrant jet velocity V3 = V0
j serial number of an eigenvalue of the 	V ,Vz,Vy impact velocity and its components

characteristic equation j =1,2, . . . Vn the normal velocity of the fluid on
J the momentum of the part of the jet the free surface

passing through a cross section Vr velocity of circle expanding
within a second J =ρ0V 2

0 Sc VR velocity of cavity narrowing/expanding
k a coefficient of cavity expansion equation ṼR = VR + Vr
l cavity length W planing speed
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Table 1. Continued

l0 cavity steady or averaged length value Wc cavitator drag
lb wavelength of the waves on the cavity x the distance between the cavitator and

surface the given cross-section
ṁn , ṁ y mass rates per second for gas x1, x2 coordinates of the beginning and the

injection and loss end of a portion of the cavity with
m∗

z ,m
∗
y,m

∗
R apparent masses pressure p0

M = p0 f
/

p0 α damping coefficient in the equation of
1/n polytropic factor cavity oscillation
N the number of waves along the length αkp damping coefficient corresponding to

of the cavity the cavity stability boundary
p∞ pressure at infinity αy = Vy

/
W

pv, pk vapour and gas pressure in a cavity αR = ṼR

/
W

pk0 steady (averaged) gas pressure in γ angle between the vertical axis and
the cavity the impact velocity 	V

�p=p∞−pv−pk≈p∞ − pk γ1 angle between the vertical axis and
p0 jet stagnation pressure the impulsive force vector 	P
p0 f stagnation pressure of the surrounding ε gap ε= R − r

flow η depth of cylinder immersion
	P, Pz, Py impulsive force and its components κ jet ejection coefficient κ=0·155

q external additional volume to disturb λ complex eigenvalue of the
a cavity characteristic equation λ=µ± iω

q0 total jet volume rate q0 = ScV0 µ real part of an eigenvalue
q2,q3 volume per second rates through S2 ρ fluid density

and S3 sections ρ0 jet density
¯̇qn the governing parameter of the ρk gas density in the cavity

nonlinear problem – nondimensional σ cavitation number σ =2�p
/
ρV 2

injection rate τ time lag
Q gas volume in a cavity τ0 steady value of τ
Q0 steady (averaged) value of gas volume τ̄0 the governing parameter of a linear

in a cavity problem – a dimensionless time lag
Qn,Qy volume per second rate of gas ϕ phase frequency response function

injection and withdrawal from a cavity Φ velocity potential
r radius of circle expanding χ = ω̄τ̄0/2
R radius of cavity narrowing or expanding ψ= Vz

/
W

R0 radius of the jet ω imaginary part of an eigenvalue ≈ circular
Rn radius of cavitator frequency of oscillations
R N pulsation mode featuring N waves along

the cavity

a horizontal bar above a symbol means that the symbol is dimensionless
an overdotted symbol means the derivative with respect to time
an upper accent means a derivative with respect to other variables
a lower subscript j means correspondence to a jth eigenvalue

5. Conclusions

Three problems in high-speed hydrodynamics and supercavitation have been considered in this
paper:
– Theoretical studies of the dynamic properties of slender ventilated cavities have been per-

formed;
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– A planar problem of the impact and immersion of an expanding cylinder into liquid with
a cylindrical free surface of variable radius has been solved;

– A new theoretical model of cavity closure onto a gas jet has been proposed, and an
approximate analysis of the model has been performed.
In the area of cavity dynamic properties (Section 2), the dynamic theory of slender axi-

symmetric cavities filled with a compressible gas has been developed. The key elements of the
theory are:
– a closed problem formulation with gas mass balance in a cavity taken into account. The

equation of cavity expansion for slender unsteady cavities has been used [19, 20, 40];
– a mathematical model of an unsteady cavity in the form of a system of nonlinear

time-delay differential equations describing variations of cavity geometry and internal
pressure has been developed;

– a linear theory of cavity stability and oscillations which unveils the nature and peculiarities
of the phenomena has been considered. The theory is applicable to the main cavity types:
cavities in a weightless liquid, vertical cavities in a gravity field, cavities with gas losses,
cavities closed onto a gas jet, cavity undergoing forced oscillations;

– the generic property of ventilated cavities under various conditions is their oscillatory
instability, which is at the basis of the known phenomenon of pulsation (self-oscillations)
of cavities. The gas loss from the cavity is a damping factor;

– finding out the special role of a dimensionless parameter, i.e., the dimensionless time lag,
expressed eventually through a relation between Euler and cavitation numbers;

– a method to determine a total infinite set of complex eigenvalues of transcendental char-
acteristic equations involving the extraction of a physically sensible dominating root;

– a detailed comparison of the obtained theory with experimental data on oscillations of
axisymmetric and 2-D cavities;

– a qualitative analysis and numerical modeling of nonlinear cavity oscillations (self-oscilla-
tions) under variable gas injection with gas-bubble detachment taken into account.
Within the accuracy of constant parameter values, the above theory is totally valid for pla-

nar cavities also since the equation governing the expansion of a planar cavity has the same
structure as that for axisymmetric cavities.

Basically, the mathematical model of an unsteady gas-filled cavity obtained here, the model
being in the form of a system of nonlinear differential equations, makes it possible to con-
sider a great many other problems of unsteady cavitation, e.g. forced cavity oscillations under
different types of excitation, methods to control cavities, cavity dynamics under different
mechanisms of gas loss, interaction between cavities and gas jets, etc.

In Section 3, a planar problem regarding the impact and immersion of an expanding cyl-
inder into liquid with a cylindrical free surface of variable radius has been solved in Wagner’s
formulation.

A planar problem involving a symmetric and oblique impact of an expanding circular arc
against a narrowing or expanding circular liquid boundary has been solved. The apparent
masses of the fluid for side impact, vertical impact and for expansion of the arc and/or nar-
rowing of the cavity have been determined. The hydrodynamic coefficients of the transversal
forces have been determined approximately.

For immersion, only a symmetric problem was considered. Wagner’s problem has been
solved, and exact formulas have been derived for the solution assuming a small gap between
the body and the cavity. The wetted width has been determined as a function of the gap and
immersion depth. An approximate expression has been obtained for the hydrodynamic force
acting per unit length of the cylinder, and conditions for the existence of this force have been
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established. The force is determined within a shock problem formulation neglecting the sec-
ond power of the fluid velocity.

It would be interesting to develop the solutions further in the two following areas:
– to solve Wagner’s problem for an asymmetrical (oblique) immersion of a cylinder;
– to refine the expressions for the hydrodynamic force by taking into account the second

power of the fluid velocity.
In Section 4, a cavity which closes onto a central jet of an incompressible gas or liquid,

with no total pressure loss in the jet and its branches, was considered. The closure pattern
with a re-entrant jet separating from the central one has been proposed.

The total dynamic pressure of the jet is assumed to be less than that of the surrounding
flow. This causes critical points to occur in the jet within the area of jet/cavity interaction,
the points making a circle on the cavity boundary. The circle separates a part of the initial
central jet to turn this part into an annular re-entrant jet running back into the cavity. This
is an important feature of this type of flow for, if the central jet contains gas, it partially con-
tributes to cavity ventilation.

An approximate analysis of such a flow has been performed. The re-entrant jet flow rate
has been determined as a function of the central jet momentum. The results of the analysis
are in close agreement with experiment.

The proposed hydrodynamic flow pattern clearly explains the physical peculiarities of cav-
ity closure onto a gas jet, and may be applied to examine experimental results and be used
as a basic model for numerical codes.
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